

CAMAC Model 2341A 16-Channel Coincidence Register

NEW! Inputs respond to signals as low as -100 mV!

- 16 channels in single-width module . . . less space than that required by other designs.
- Summing outputs provide fast trigger capability . . . organized in two groups of eight registers for use in multiplicity decisions.
- Fast clear input . . . permits use of loose pretrigger (so summing output can participate in final logic decision) without deadtime generating dataway clearing operation.
- Narrow coincidence widths . . . High speed design permits coincidence width as narrow as 1 nsec.
- Input double-pulse resolution <10 nsec . . . assures high efficiency even in high count rate applications.
- Accepts input amplitudes as low as -100 mV . . . permits triggering even after substantial attenuation from long cable delays.

The LeCroy Model 2341A Coincidence Register ("pattern unit") offers fast storage functions in computer-compatible CAMAC standard packaging. The integrated circuit design affords high density packaging, permitting 16 complete channels in one CAMAC single-width module.

The 2341A operates from standard NIM logic levels. The logic channels, which seek a coincidence between each input and a common fast gate input, employ MECL III integrated circuits and provide coincidence resolving times under 2 nsec. Logical "1" data levels, representing the time coincidence between the common gate and the 16 inputs, are stored in a 16-bit fast buffer register for later readout under CAMAC commands. The facility of performing majority logic is provided by two rear-panel summing outputs which are each driven by 8 logic channels. The output current of the summing circuit is proportional, in increments of 4 mA per register bit, to the number of coincidences stored in the register. Bridged high impedance outputs permit cascading any number of summing outputs. Other operating features include a front-panel clear input which responds to negative logic levels and a built-in test mode.

The Model 2341A Coincidence Register is a member of LeCroy's CAMAC Series, a growing line of instruments which combine high performance with the flexibility and computer compatibility of the CAMAC standard.

November 1977

Innovators in Instrumentation

Lecroy research systems corporation • 700 South Main Street • Spring Valley, New York 10977 TWX: 710-577-2832 Cable: Leresco Telepone: (914) 425-2000

SPECIFICATIONS CAMAC Model 2341A 16-CHANNEL COINCIDENCE REGISTER

INPUT CHARACTERISTICS

Inputs:

16, Lemo connectors; impedance 50 Ω \pm 5%; direct-coupled; protected to

 ± 10 volts for inputs <1 μ sec; reflections <10% for 2 nsec risetime.

Required Input Level:

Adjustable from -100 mV to -1.0 V with rear-panel potentiometer.

Double Pulse Resolution:

10 nsec max.; 8 nsec typical.

Gate Input:

One; Lemo connector; 50 Ω impedance; -600 mV or greater enables; minimum duration at full logic level (-750 mV), 2.0 nsec; protected to ± 100 V.

Should precede inputs by at least 3 nsec.

Clear Input:

One, Lemo connector: -600~mV or greater, $50~\Omega$ impedance; minimum du-

ration, 10 nsec; protected to ±100 V. 10 nsec settling time after clear.

OUTPUT CHARACTERISTICS

Data Readout:

CAMAC function and address commands gate the 16 binary bits on to the 2° to 12^{15} CAMAC dataway bus lines; logical 1, \leq 0.5 volts (0 to 16 mA); logical

0, open circuit (\leq 100 μ A at 5.5 volts).

Summing Outputs:

2; one pair of high impedance bridged connectors for each set of 8 inputs; 4 mA \pm 3% is presented for each register latched; maximum output into 25 Ω , -1 volt for single or cascaded units (corresponds to 10 set registers); risetime, 4 nsec (increasing slightly for multiple levels); delay of leading edge

of summing output from leading edge of input, 20 nsec.

GENERAL

Coincidence Width:

1 nsec up, determined by input and gate pulse durations.

CAMAC Commands:

Z or C: Clears register, requires S2.

I: Gate Input is inhibited for duration of CAMAC inhibit commands.

Q: A Q=1 response is generated in recognition of an F(0), F(2), F(9), or F(25) for a valid N and A(0), but there will be no response (Q=0) under any

other condition.

X: An X=1 (Command Accepted) response is generated when a valid F, N,

and A command is generated.

CAMAC Function Codes:

F(0): Read group 1 register; requires N and A(0).

F(2): Read and Clear group 1 register; requires N, A(0), and S2.

F(9): Clear Group 1 register; requires N, A(0), and S2.

F(25): Increment (test mode latches all channels); requires N and S2.

Packaging:

CAMAC single-width module. Conforms to ESONE Report EUR 4100 or

IEEE #583 standards.

Power Requirements:

+6 V at 500 mA

-6 V at 800 mA

-24 V at 65 mA